PICKSC

Particle-in-Cell Kinetic Simulation Software Center

UCLA Logo
Particle-in-Cell and Kinetic Simulation Software Center
Funded by NSF and SciDac
  • News
    • PICKSC News
    • Collaborators’ News
    • PICKSC Results
    • Software Releases
  • People
  • Publications
    • Overview
    • PICKSC Members’ Publications
    • Reports and Notes
    • Presentations
  • Software
    • Overview
    • Production Codes
      • Overview
      • OSIRIS
        • OSIRIS WIKI
      • QuickPIC
      • UPIC-EMMA
      • OSHUN
    • Skeleton Codes
      • Overview
      • Serial
      • QuickStart
      • OpenMP
      • Vectorization
      • MPI
      • Coarray Fortran
      • OpenMP/MPI
      • OpenMP/Vectorization
      • GPU
    • UPIC Framework
    • Gridless Particle Codes
    • Educational Software
      • Overview
      • JupyterPIC
      • Particle Orbit Visualization
      • Python-PIC-GUI
      • ZPIC
    • Fortran 2003 Techniques
  • Research
    • Overview
    • High-Performance Computing
    • Plasma Based Acceleration
    • Nonlinear Optics of Plasmas
  • Engagement
    • Workshops
    • Opportunities
You are here: Home / News / KNL Timings

KNL Timings

May 10, 2018 by Benjamin Winjum

PICKSC researchers have been updating our software to take full advantage of the many-core Intel Knight’s Landing (KNL) nodes.

An OpenMP 3D electrostatic code from UPIC 2.0 has achieved a performance of 850 psec/particle-step on a single Intel KNL node. On a large memory KNL such as the 96 GB node on the Cori machine at NERSC, a PIC simulation with a billion particles will run in about one second per time step.

A new branch of QuickPIC (described here) has also been compiled and run on Cori at NERSC. On a single KNL node with 68 threads, the total time spent on one particle per step is 3.82 ns (including 1 iteration).

Filed Under: News, PICKSC News, PICKSC Results

© 2014 UC REGENTS TERMS OF USE & PRIVACY POLICY

  1. HOME
  2. NEWS
  3. PEOPLE
  4. PUBLICATIONS
  5. RESEARCH
  6. SOFTWARE
  7. OPPORTUNITIES