Modeling Plasma Wake Field Accelerator

Weiming An
University of California Los Angeles
anweiming@ucla.edu

http://picksc.idre.ucla.edu
Why Plasma?

1-D plasma density wave

\[V_{ph} = c \]

Gauss’ Law

\[\nabla \cdot E \sim \imath k_p E = -4\pi e n_1 \]

\[k_p = \omega_p / V_{ph} \approx \omega_p / c \]

\[n_1 \sim n_o \]

\[\Rightarrow eE \sim 4\pi e n_o e^2 c / \omega_p = mc \omega_p \]

or \[eE \sim \sqrt{\frac{n_o}{10^{16} \text{cm}^{-3}}} \] 10 GeV/m

\(~1000~\text{times larger than the conventional accelerators}\)
How to Make a Plasma Wake Field?

Nonlinear Process

LWFA:
- Drive Beam
- Trailing Beam
- Wake: phase velocity = driver velocity (V_g or V_{beam})

PWFA:

LWFA: Tajima and Dawson 1979
PWFA: Chen, Dawson et al., 1985

Plasma simulation has greatly impacted on PBA research.
Simulation of PWFA

Beam Particles: 10^8−10^9

Plasma Length: ~ 1 m

Moving Window

Plasma Particles: $>10^{10}$

Maxwell's Eqns

\[
\begin{align*}
\nabla \times \vec{E} & = -\frac{\partial \vec{B}}{\partial t} \\
\nabla \times \vec{B} & = \frac{\partial \vec{E}}{\partial t} + \vec{J} \\
\n\nabla \cdot \vec{E} & = \rho \\
\n\nabla \cdot \vec{B} & = 0
\end{align*}
\]

All particles move self-consistently

~ 500 µm
Box and Cell Size

3D or 2D r-z with moving window

Box Size: Large Enough to minimize the boundary effects.

Cell Size: Resolve the plasma wave length.

\[\leq 0.05k_p^{-1} \]
Define the density profile using a math function.
Field Ionized Plasma
The focal length of the beam

\[\beta^* = \gamma \frac{\sigma_r^2}{\epsilon_N} \]

\[\sigma_r = \sigma_{r0} \sqrt{1 + \frac{(s - s_0)^2}{\beta^*^2}} \]

Twiss Parameter:
\[\gamma x'^2 + 2\alpha xx' + \beta x^2 = \epsilon \]

In the Vacuum:
\[\gamma = \frac{1}{\beta^*}, \quad \beta = \beta^*(1 + \alpha^2), \quad \alpha = -\frac{s - s_0}{\beta^*} \]
Beam Density: \[n_b = n_{b0} \exp\left(-\frac{r^2}{2\sigma_r^2}\right) \exp\left(-\frac{z^2}{2\sigma_z^2}\right) \]

Transverse Phase Space:
\[\sim \exp\left(-\frac{x^2}{2\sigma_{x0}^2}\right) \exp\left(-\frac{v^2}{2\sigma_{v0}^2}\right) \]

Transverse Phase Space at \(s^* = z - z_0 \):
\[\sim \exp\left[-\frac{x^2}{2\sigma_{x0}^2(1 + s^*^2/\beta^2)}\right] \exp\left[-\frac{(v - \frac{s^*cx}{\beta^2 + s^*^2})^2}{2\sigma_{v0}^2/(1 + s^*^2/\beta^2)}\right] \]

\[\bar{\sigma}_x = \sigma_{x0}\sqrt{1 + s^*^2/\beta^2} \quad \bar{\sigma}_v = \sigma_{v0}/\sqrt{1 + s^*^2/\beta^2} \]

Good for Osiris Initialization!
QuickPIC Open Source

Boundary Condition
Conducting
Interpolation Order
1st

MPI or Shared Memory
MPI + OpenMP

http://picksc.idre.ucla.edu
Weiming An
anweiming@ucla.edu

Fortran 2003
Object Oriented

Fortran 77
Fortran 90

Github QuickPIC-OpenSource